Cargando…
A scalable and portable framework for massively parallel variable selection in genetic association studies
Summary: The deluge of data emerging from high-throughput sequencing technologies poses large analytical challenges when testing for association to disease. We introduce a scalable framework for variable selection, implemented in C++ and OpenCL, that fits regularized regression across multiple Graph...
Autor principal: | Chen, Gary K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289918/ https://www.ncbi.nlm.nih.gov/pubmed/22238272 http://dx.doi.org/10.1093/bioinformatics/bts015 |
Ejemplares similares
-
COSMOS: Python library for massively parallel workflows
por: Gafni, Erik, et al.
Publicado: (2014) -
ParGenes: a tool for massively parallel model selection and phylogenetic tree inference on thousands of genes
por: Morel, Benoit, et al.
Publicado: (2019) -
MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments
por: Georgakopoulos-Soares, Ilias, et al.
Publicado: (2017) -
tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
por: Keyes, Timothy J, et al.
Publicado: (2023) -
simpleaf: a simple, flexible, and scalable framework for single-cell data processing using alevin-fry
por: He, Dongze, et al.
Publicado: (2023)