Cargando…

Preparation of a Nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) Complex and Its Anti-Tumor Effect on Hepatocellular Carcinoma Cells

Manganese-zinc-ferrite nanoparticles (Mn(0.5)Zn(0.5)Fe(2)O(4), MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of M...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jia, Zhang, Dongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290471/
https://www.ncbi.nlm.nih.gov/pubmed/22399986
http://dx.doi.org/10.3390/s90907058
Descripción
Sumario:Manganese-zinc-ferrite nanoparticles (Mn(0.5)Zn(0.5)Fe(2)O(4), MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles in vitro was tested by the MTT assay. A nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex was made by an impregnation process. The complex’s shape, component, envelop rate and release rate of As(2)O(3) were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex combined with magnetic fluid hyperthermia (MFH) on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn(0.5)Zn(0.5)Fe(2)O(4) and nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex were both prepared successfully. The Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn(0.5)Zn(0.5)Fe(2)O(4) didn’t show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex can significantly inhibit the growth of hepatoma carcinoma cells.