Cargando…
An Improved Approach for Terrain Correction: Application to Northeast Asia’s Highest Peak (Mt. Jade, Taiwan)
Mt. Jade (or “Yushan” in Chinese) is the highest peak in northeast Asia. The topography is very rugged and complicated. Such terrain makes it difficult to obtain the correct results for terrain corrections (TCs). This paper developed an improved approach, named cone-section method, to compute the TC...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290486/ https://www.ncbi.nlm.nih.gov/pubmed/22399968 http://dx.doi.org/10.3390/s90906604 |
Sumario: | Mt. Jade (or “Yushan” in Chinese) is the highest peak in northeast Asia. The topography is very rugged and complicated. Such terrain makes it difficult to obtain the correct results for terrain corrections (TCs). This paper developed an improved approach, named cone-section method, to compute the TCs of the Mt. Jade area using a high-resolution digital elevation model (DEM) on a 9″ × 9″ grid. The corrections were calculated to the distance of 100 km with an average rock density of 2.57 × 10(3) kg·m(−3). This investigation compared the results of TCs from the cone-section method with those from the cylinder prism and Gaussian quadrature methods using a 9″ × 9″ elevation grid for the inner zone and a 90″ × 90″ elevation grid for the outer zone. The inner and outer radii were set to 20 and 200 km, respectively. The comparisons showed that the cone-section algorithm is consistent with the Gaussian quadrature. Furthermore, the cone-section method is an appropriate approach for TCs in high elevation areas, yielding results that outperform the cylinder prism method. |
---|