Cargando…

Chalcogenide Glass Optical Waveguides for Infrared Biosensing

Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid...

Descripción completa

Detalles Bibliográficos
Autores principales: Anne, Marie-Laure, Keirsse, Julie, Nazabal, Virginie, Hyodo, Koji, Inoue, Satoru, Boussard-Pledel, Catherine, Lhermite, Hervé, Charrier, Joël, Yanakata, Kiyoyuki, Loreal, Olivier, Le Person, Jenny, Colas, Florent, Compère, Chantal, Bureau, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290500/
https://www.ncbi.nlm.nih.gov/pubmed/22423209
http://dx.doi.org/10.3390/s90907398
_version_ 1782225005094895616
author Anne, Marie-Laure
Keirsse, Julie
Nazabal, Virginie
Hyodo, Koji
Inoue, Satoru
Boussard-Pledel, Catherine
Lhermite, Hervé
Charrier, Joël
Yanakata, Kiyoyuki
Loreal, Olivier
Le Person, Jenny
Colas, Florent
Compère, Chantal
Bureau, Bruno
author_facet Anne, Marie-Laure
Keirsse, Julie
Nazabal, Virginie
Hyodo, Koji
Inoue, Satoru
Boussard-Pledel, Catherine
Lhermite, Hervé
Charrier, Joël
Yanakata, Kiyoyuki
Loreal, Olivier
Le Person, Jenny
Colas, Florent
Compère, Chantal
Bureau, Bruno
author_sort Anne, Marie-Laure
collection PubMed
description Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors.
format Online
Article
Text
id pubmed-3290500
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-32905002012-03-15 Chalcogenide Glass Optical Waveguides for Infrared Biosensing Anne, Marie-Laure Keirsse, Julie Nazabal, Virginie Hyodo, Koji Inoue, Satoru Boussard-Pledel, Catherine Lhermite, Hervé Charrier, Joël Yanakata, Kiyoyuki Loreal, Olivier Le Person, Jenny Colas, Florent Compère, Chantal Bureau, Bruno Sensors (Basel) Article Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors. Molecular Diversity Preservation International (MDPI) 2009-09-15 /pmc/articles/PMC3290500/ /pubmed/22423209 http://dx.doi.org/10.3390/s90907398 Text en © 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Anne, Marie-Laure
Keirsse, Julie
Nazabal, Virginie
Hyodo, Koji
Inoue, Satoru
Boussard-Pledel, Catherine
Lhermite, Hervé
Charrier, Joël
Yanakata, Kiyoyuki
Loreal, Olivier
Le Person, Jenny
Colas, Florent
Compère, Chantal
Bureau, Bruno
Chalcogenide Glass Optical Waveguides for Infrared Biosensing
title Chalcogenide Glass Optical Waveguides for Infrared Biosensing
title_full Chalcogenide Glass Optical Waveguides for Infrared Biosensing
title_fullStr Chalcogenide Glass Optical Waveguides for Infrared Biosensing
title_full_unstemmed Chalcogenide Glass Optical Waveguides for Infrared Biosensing
title_short Chalcogenide Glass Optical Waveguides for Infrared Biosensing
title_sort chalcogenide glass optical waveguides for infrared biosensing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290500/
https://www.ncbi.nlm.nih.gov/pubmed/22423209
http://dx.doi.org/10.3390/s90907398
work_keys_str_mv AT annemarielaure chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT keirssejulie chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT nazabalvirginie chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT hyodokoji chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT inouesatoru chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT boussardpledelcatherine chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT lhermiteherve chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT charrierjoel chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT yanakatakiyoyuki chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT lorealolivier chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT lepersonjenny chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT colasflorent chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT comperechantal chalcogenideglassopticalwaveguidesforinfraredbiosensing
AT bureaubruno chalcogenideglassopticalwaveguidesforinfraredbiosensing