Cargando…
Text Mining Improves Prediction of Protein Functional Sites
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts f...
Autores principales: | Verspoor, Karin M., Cohn, Judith D., Ravikumar, Komandur E., Wall, Michael E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290545/ https://www.ncbi.nlm.nih.gov/pubmed/22393388 http://dx.doi.org/10.1371/journal.pone.0032171 |
Ejemplares similares
-
Literature mining of protein-residue associations with graph rules learned through distant supervision
por: Ravikumar, KE, et al.
Publicado: (2012) -
Ion Channel ElectroPhysiology Ontology (ICEPO) – a case study of text mining assisted ontology development
por: Elayavilli, Ravikumar Komandur, et al.
Publicado: (2016) -
Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct
por: Funk, Christopher S, et al.
Publicado: (2015) -
Fast dynamics perturbation analysis for prediction of protein functional sites
por: Ming, Dengming, et al.
Publicado: (2008) -
Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature
por: Ravikumar, Komandur Elayavilli, et al.
Publicado: (2015)