Cargando…
The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas
Dark septate endophytic (DSE) fungi represent a frequent root-colonizing fungal group common in environments with strong abiotic stress, such as (semi)arid ecosystems. This work aimed to study the DSE fungi colonizing the plants of semiarid sandy grasslands with wood steppe patches on the Great Hung...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290574/ https://www.ncbi.nlm.nih.gov/pubmed/22393417 http://dx.doi.org/10.1371/journal.pone.0032570 |
_version_ | 1782225019740356608 |
---|---|
author | Knapp, Dániel G. Pintye, Alexandra Kovács, Gábor M. |
author_facet | Knapp, Dániel G. Pintye, Alexandra Kovács, Gábor M. |
author_sort | Knapp, Dániel G. |
collection | PubMed |
description | Dark septate endophytic (DSE) fungi represent a frequent root-colonizing fungal group common in environments with strong abiotic stress, such as (semi)arid ecosystems. This work aimed to study the DSE fungi colonizing the plants of semiarid sandy grasslands with wood steppe patches on the Great Hungarian Plain. As we may assume that fungi colonizing both invasive and native species are generalists, root associated fungi (RAF) were isolated from eight native and three invasive plant species. The nrDNA sequences of the isolates were used for identification. To confirm that the fungi were endophytes an artificial inoculation system was used to test the isolates: we considered a fungus as DSE if it colonized the roots without causing a negative effect on the plant and formed microsclerotia in the roots. According to the analyses of the ITS sequence of nrDNA the 296 isolates clustered into 41 groups. We found that 14 of these 41 groups were DSE, representing approximately 60% of the isolates. The main DSE groups were generalist and showed no specificity to area or season and colonized both native and invasive species, demonstrating that exotic plants are capable of using the root endophytic fungi of the invaded areas. The DSE community of the region shows high similarity to those found in arid grasslands of North America. Taking into account a previous hypothesis about the common root colonizers of those grasslands and our results reported here, we hypothesize that plants of (semi)arid grasslands share common dominant members of the DSE fungal community on a global scale. |
format | Online Article Text |
id | pubmed-3290574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32905742012-03-05 The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas Knapp, Dániel G. Pintye, Alexandra Kovács, Gábor M. PLoS One Research Article Dark septate endophytic (DSE) fungi represent a frequent root-colonizing fungal group common in environments with strong abiotic stress, such as (semi)arid ecosystems. This work aimed to study the DSE fungi colonizing the plants of semiarid sandy grasslands with wood steppe patches on the Great Hungarian Plain. As we may assume that fungi colonizing both invasive and native species are generalists, root associated fungi (RAF) were isolated from eight native and three invasive plant species. The nrDNA sequences of the isolates were used for identification. To confirm that the fungi were endophytes an artificial inoculation system was used to test the isolates: we considered a fungus as DSE if it colonized the roots without causing a negative effect on the plant and formed microsclerotia in the roots. According to the analyses of the ITS sequence of nrDNA the 296 isolates clustered into 41 groups. We found that 14 of these 41 groups were DSE, representing approximately 60% of the isolates. The main DSE groups were generalist and showed no specificity to area or season and colonized both native and invasive species, demonstrating that exotic plants are capable of using the root endophytic fungi of the invaded areas. The DSE community of the region shows high similarity to those found in arid grasslands of North America. Taking into account a previous hypothesis about the common root colonizers of those grasslands and our results reported here, we hypothesize that plants of (semi)arid grasslands share common dominant members of the DSE fungal community on a global scale. Public Library of Science 2012-02-29 /pmc/articles/PMC3290574/ /pubmed/22393417 http://dx.doi.org/10.1371/journal.pone.0032570 Text en Knapp et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Knapp, Dániel G. Pintye, Alexandra Kovács, Gábor M. The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas |
title | The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas |
title_full | The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas |
title_fullStr | The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas |
title_full_unstemmed | The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas |
title_short | The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas |
title_sort | dark side is not fastidious – dark septate endophytic fungi of native and invasive plants of semiarid sandy areas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290574/ https://www.ncbi.nlm.nih.gov/pubmed/22393417 http://dx.doi.org/10.1371/journal.pone.0032570 |
work_keys_str_mv | AT knappdanielg thedarksideisnotfastidiousdarkseptateendophyticfungiofnativeandinvasiveplantsofsemiaridsandyareas AT pintyealexandra thedarksideisnotfastidiousdarkseptateendophyticfungiofnativeandinvasiveplantsofsemiaridsandyareas AT kovacsgaborm thedarksideisnotfastidiousdarkseptateendophyticfungiofnativeandinvasiveplantsofsemiaridsandyareas AT knappdanielg darksideisnotfastidiousdarkseptateendophyticfungiofnativeandinvasiveplantsofsemiaridsandyareas AT pintyealexandra darksideisnotfastidiousdarkseptateendophyticfungiofnativeandinvasiveplantsofsemiaridsandyareas AT kovacsgaborm darksideisnotfastidiousdarkseptateendophyticfungiofnativeandinvasiveplantsofsemiaridsandyareas |