Cargando…
Characterization of the Fungal Microbiota (Mycobiome) in Healthy and Dandruff-Afflicted Human Scalps
The human scalp harbors a vast community of microbial mutualists, the composition of which is difficult to elucidate as many of the microorganisms are not culturable using current culture techniques. Dandruff, a common scalp disorder, is known as a causative factor of a mild seborrheic dermatitis as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290624/ https://www.ncbi.nlm.nih.gov/pubmed/22393454 http://dx.doi.org/10.1371/journal.pone.0032847 |
Sumario: | The human scalp harbors a vast community of microbial mutualists, the composition of which is difficult to elucidate as many of the microorganisms are not culturable using current culture techniques. Dandruff, a common scalp disorder, is known as a causative factor of a mild seborrheic dermatitis as well as pityriasis versicolor, seborrheic dermatitis, and atopic dermatitis. Lipophilic yeast Malassezia is widely accepted to play a role in dandruff, but relatively few comprehensive studies have been reported. In order to investigate fungal biota and genetic resources of dandruff, we amplified the 26S rRNA gene from samples of healthy scalps and dandruff-afflicted scalps. The sequences were analyzed by a high throughput method using a GS-FLX 454 pyrosequencer. Of the 74,811 total sequence reads, Basidiomycota (Filobasidium spp.) was the most common phylum associated with dandruff. In contrast, Ascomycota (Acremonium spp.) was common in the healthy scalps. Our results elucidate the distribution of fungal communities associated with dandruff and provide new avenues for the potential prevention and treatment of dandruff. |
---|