Cargando…

Identification of the Neogenin-Binding Site on the Repulsive Guidance Molecule A

Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the chick retinotectal system. RGMa, one of the 3 isoforms found in mammals, is involved in laminar patterning, cephalic neural tube closure, axon guidance, and inhibition of...

Descripción completa

Detalles Bibliográficos
Autores principales: Itokazu, Takahide, Fujita, Yuki, Takahashi, Ryosuke, Yamashita, Toshihide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291610/
https://www.ncbi.nlm.nih.gov/pubmed/22396795
http://dx.doi.org/10.1371/journal.pone.0032791
Descripción
Sumario:Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the chick retinotectal system. RGMa, one of the 3 isoforms found in mammals, is involved in laminar patterning, cephalic neural tube closure, axon guidance, and inhibition of axonal regeneration. In addition to its roles in the nervous system, RGMa plays a role in enhancing helper T-cell activation. Binding of RGM to its receptor, neogenin, is considered necessary to transduce these signals; however, information on the binding of RGM to neogenin is limited. Using co-immunoprecipitation studies, we have identified that the RGMa region required for binding to neogenin contains amino acids (aa) 259–295. Synthesized peptide consisting of aa 284–293 directly binds to the extracellular domain (ECD) of recombinant neogenin, and addition of this peptide inhibits RGMa-induced growth cone collapse in mouse cortical neurons. Thus, we propose that this peptide is a promising lead in finding reagents capable of inhibiting RGMa signaling.