Cargando…
Coronatine Gene Expression In Vitro and In Planta, and Protein Accumulation During Temperature Downshift in Pseudomonas syringae
The plant pathogenic bacterium Pseudomonas syringae PG4180 synthesizes high levels of the phytotoxin coronatine (COR) at the virulence-promoting temperature of 18 °C, but negligible amounts at 28 °C. Temperature-dependent COR gene expression is regulated by a modified two-component system, consistin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291911/ https://www.ncbi.nlm.nih.gov/pubmed/22408526 http://dx.doi.org/10.3390/s90604272 |
Sumario: | The plant pathogenic bacterium Pseudomonas syringae PG4180 synthesizes high levels of the phytotoxin coronatine (COR) at the virulence-promoting temperature of 18 °C, but negligible amounts at 28 °C. Temperature-dependent COR gene expression is regulated by a modified two-component system, consisting of a response regulator, CorR, the histidine protein kinase CorS, and a third component, termed CorP. We analyzed at transcriptional and translational levels the expression of corS and the cma operon involved in COR biosynthesis after a temperature downshift from 28 to 18 °C. Expression of cma was induced within 20 min and increased steadily whereas corS expression was only slightly temperature-dependent. Accumulation of CmaB correlated with accumulation of cma mRNA. However, cma transcription was suppressed by inhibition of de novo protein biosynthesis. A transcriptional fusion of the cma promoter to a promoterless egfp gene was used to monitor the cma expression in vitro and in planta. A steady induction of cma::egfp by temperature downshift was observed in both environments. The results indicate that PG4180 responds to a temperature decrease with COR gene expression. However, COR gene expression and protein biosynthesis increased steadily, possibly reflecting adaptation to long-term rather than rapid temperature changes. |
---|