Cargando…
Improving Temporal Coverage of an Energy-Efficient Data Extraction Algorithm for Environmental Monitoring Using Wireless Sensor Networks
Collecting raw data from a wireless sensor network for environmental monitoring applications can be a difficult task due to the high energy consumption involved. This is especially difficult when the application requires specialized sensors that have very high energy consumption, e.g. hydrological s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291947/ https://www.ncbi.nlm.nih.gov/pubmed/22408562 http://dx.doi.org/10.3390/s90604941 |
Sumario: | Collecting raw data from a wireless sensor network for environmental monitoring applications can be a difficult task due to the high energy consumption involved. This is especially difficult when the application requires specialized sensors that have very high energy consumption, e.g. hydrological sensors for monitoring marine environments. This paper introduces a technique for reducing energy consumption by minimizing sensor sampling operations. In addition, we illustrate how a randomized algorithm can be used to improve temporal coverage such that the time between the occurrence of an event and its detection can be minimized. We evaluate our approach using real data collected from a sensor network deployment on the Great Barrier Reef. |
---|