Cargando…
Preparation of TiO(2) Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens
The preparation of TiO(2) nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl(4) and Zn(NO(3))(2)·6H(2)O as starting materials. XRD results show that the phases of anatase TiO(2) and rutile TiO(2...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291984/ https://www.ncbi.nlm.nih.gov/pubmed/22408415 http://dx.doi.org/10.3390/ijms13021658 |
Sumario: | The preparation of TiO(2) nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl(4) and Zn(NO(3))(2)·6H(2)O as starting materials. XRD results show that the phases of anatase TiO(2) and rutile TiO(2) coexist for precursor powders without added ZnO (T-0Z) and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO(2) appears. In addition, when the TiO(2) precursor powders contain 9 mol% ZnO (T-9Z) are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO(2) and the minor phases of anatase TiO(2) and Zn(2)Ti(3)O(8). The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO(2) nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens. |
---|