Cargando…
Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals
An electronic nose (E-nose) was employed to detect the aroma of green tea after different storage times. Longjing green tea dry leaves, beverages and residues were detected with an E-nose, respectively. In order to decrease the data dimensionality and optimize the feature vector, the E-nose sensor r...
Autores principales: | Yu, Huichun, Wang, Yongwei, Wang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292096/ https://www.ncbi.nlm.nih.gov/pubmed/22408494 http://dx.doi.org/10.3390/s91008073 |
Ejemplares similares
-
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017) -
Discrimination of Chinese Liquors Based on Electronic Nose and Fuzzy Discriminant Principal Component Analysis
por: Wu, Xiaohong, et al.
Publicado: (2019) -
Candidates for Synergies: Linear Discriminants versus Principal Components
por: Vinjamuri, Ramana, et al.
Publicado: (2014) -
From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction
por: Cocco, Simona, et al.
Publicado: (2013) -
Eigenvalues of Non-Linear Problems
por: Prodi, Giovanni
Publicado: (2011)