Cargando…
Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System
Surface Electromyography (sEMG) activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std) was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue....
Autores principales: | Al-Mulla, Mohamed R., Sepulveda, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292150/ https://www.ncbi.nlm.nih.gov/pubmed/22399910 http://dx.doi.org/10.3390/s100504838 |
Ejemplares similares
-
An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue
por: Al-Mulla, Mohamed R., et al.
Publicado: (2011) -
A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection
por: Chang, Kang-Ming, et al.
Publicado: (2012) -
Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors
por: Xi, Xugang, et al.
Publicado: (2017) -
Is the Use of a Low-Cost sEMG Sensor Valid to Measure Muscle Fatigue?
por: del Toro, Sergio Fuentes, et al.
Publicado: (2019) -
Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion
por: Li, Dujuan, et al.
Publicado: (2022)