Cargando…

A Highly Sensitive Enzyme-Amplified Immunosensor Based on a Nanoporous Niobium Oxide (Nb(2)O(5)) Electrode

We report on the development of an enzyme-amplified sandwich-type immunosensor based on a thin gold film sputtered on an anodic nanoporous niobium oxide (Au@Nb(2)O(5)) electrode. The electrocatalytic activity of enzymatically amplified electroactive species and a stable electrode consisting of Au@Nb...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chang-Soo, Kwon, Dohyoung, Yoo, Jeng Eun, Lee, Byung Gun, Choi, Jinsub, Chung, Bong Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292168/
https://www.ncbi.nlm.nih.gov/pubmed/22399928
http://dx.doi.org/10.3390/s100505160
Descripción
Sumario:We report on the development of an enzyme-amplified sandwich-type immunosensor based on a thin gold film sputtered on an anodic nanoporous niobium oxide (Au@Nb(2)O(5)) electrode. The electrocatalytic activity of enzymatically amplified electroactive species and a stable electrode consisting of Au@Nb(2)O(5) were used to obtain a powerful signal amplification of the electrochemical immunobiosensor. The method using this electrochemical biosensor based on an Au@Nb(2)O(5) electrode provides a much better performance than those based on conventional bulk gold or niobium oxide electrodes. Our novel approach does not require any time-consuming cleaning steps to yield reproducible electrochemical signals. In addition, the strong adhesion of gold films on the niobium oxide electrodes offers a very stable substrate during electrochemical biosensing. Cyclic voltammetry measurements indicate that non-specific binding of proteins to the modified Au@Nb(2)O(5) surface is sufficiently low to be ignored in the case of our novel system. Finally, we demonstrated the ability of the biosensor based on an Au@Nb(2)O(5) offering the enhanced performance with a high resolution and sensitivity. Therefore, it is expected that the biosensor based on an Au@Nb(2)O(5) has great potential for highly efficient biological devices.