Cargando…
A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlus...
Autores principales: | Zhu, Youding, Fujimura, Kikuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292173/ https://www.ncbi.nlm.nih.gov/pubmed/22399933 http://dx.doi.org/10.3390/s100505280 |
Ejemplares similares
-
Computer-Aided Depth Video Stream Masking Framework for Human Body Segmentation in Depth Sensor Images
por: Ryselis, Karolis, et al.
Publicado: (2022) -
WPL-Based Constraint for 3D Human Pose Estimation from a Single Depth Image
por: Xing, Huiqin, et al.
Publicado: (2022) -
An Occlusion-Aware Framework for Real-Time 3D Pose Tracking
por: Fu, Mingliang, et al.
Publicado: (2018) -
Real-Time Human Pose Estimation and Gesture Recognition from Depth Images Using Superpixels and SVM Classifier
por: Kim, Hanguen, et al.
Publicado: (2015) -
Synthesizing Depth Hand Images with GANs and Style Transfer for Hand Pose Estimation
por: He, Wangyong, et al.
Publicado: (2019)