Cargando…
Biophysical and structural considerations for protein sequence evolution
BACKGROUND: Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influenc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292521/ https://www.ncbi.nlm.nih.gov/pubmed/22171550 http://dx.doi.org/10.1186/1471-2148-11-361 |
_version_ | 1782225290658840576 |
---|---|
author | Grahnen, Johan A Nandakumar, Priyanka Kubelka, Jan Liberles, David A |
author_facet | Grahnen, Johan A Nandakumar, Priyanka Kubelka, Jan Liberles, David A |
author_sort | Grahnen, Johan A |
collection | PubMed |
description | BACKGROUND: Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. RESULTS: Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS < 1 and gamma-distributed rates across sites. CONCLUSIONS: Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model. |
format | Online Article Text |
id | pubmed-3292521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32925212012-03-05 Biophysical and structural considerations for protein sequence evolution Grahnen, Johan A Nandakumar, Priyanka Kubelka, Jan Liberles, David A BMC Evol Biol Research Article BACKGROUND: Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. RESULTS: Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS < 1 and gamma-distributed rates across sites. CONCLUSIONS: Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model. BioMed Central 2011-12-16 /pmc/articles/PMC3292521/ /pubmed/22171550 http://dx.doi.org/10.1186/1471-2148-11-361 Text en Copyright ©2011 Grahnen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Grahnen, Johan A Nandakumar, Priyanka Kubelka, Jan Liberles, David A Biophysical and structural considerations for protein sequence evolution |
title | Biophysical and structural considerations for protein sequence evolution |
title_full | Biophysical and structural considerations for protein sequence evolution |
title_fullStr | Biophysical and structural considerations for protein sequence evolution |
title_full_unstemmed | Biophysical and structural considerations for protein sequence evolution |
title_short | Biophysical and structural considerations for protein sequence evolution |
title_sort | biophysical and structural considerations for protein sequence evolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292521/ https://www.ncbi.nlm.nih.gov/pubmed/22171550 http://dx.doi.org/10.1186/1471-2148-11-361 |
work_keys_str_mv | AT grahnenjohana biophysicalandstructuralconsiderationsforproteinsequenceevolution AT nandakumarpriyanka biophysicalandstructuralconsiderationsforproteinsequenceevolution AT kubelkajan biophysicalandstructuralconsiderationsforproteinsequenceevolution AT liberlesdavida biophysicalandstructuralconsiderationsforproteinsequenceevolution |