Cargando…
Post-Translational Regulation and Trafficking of the Granulin-Containing Protease RD21 of Arabidopsis thaliana
RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292552/ https://www.ncbi.nlm.nih.gov/pubmed/22396764 http://dx.doi.org/10.1371/journal.pone.0032422 |
Sumario: | RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs) or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-)activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation. |
---|