Cargando…
A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels
BACKGROUND: Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be...
Autores principales: | Kopriva, Ivica, Filipović, Marko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292585/ https://www.ncbi.nlm.nih.gov/pubmed/22208882 http://dx.doi.org/10.1186/1471-2105-12-496 |
Ejemplares similares
-
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011) -
Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets
por: Giuly, Richard J, et al.
Publicado: (2012) -
EVEREST: automatic identification and classification of protein domains in all protein sequences
por: Portugaly, Elon, et al.
Publicado: (2006) -
Magnetic resonance image tissue classification using an automatic method
por: Yazdani, Sepideh, et al.
Publicado: (2014) -
Automatic classification of communication logs into implementation stages via text analysis
por: Wang, Dingding, et al.
Publicado: (2016)