Cargando…

Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing

BACKGROUND: Use of rate adaptive atrioventricular (AV) delay remains controversial in patients with biventricular (Biv) pacing. We hypothesized that a shortened AV delay would provide optimal diastolic filling by allowing separation of early and late diastolic filling at increased heart rate (HR) in...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafie, Reza, Qamruddin, Salima, Ozhand, Ali, Taha, Nima, Naqvi, Tasneem Z
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292936/
https://www.ncbi.nlm.nih.gov/pubmed/22269022
http://dx.doi.org/10.1186/1476-7120-10-2
_version_ 1782225334049964032
author Rafie, Reza
Qamruddin, Salima
Ozhand, Ali
Taha, Nima
Naqvi, Tasneem Z
author_facet Rafie, Reza
Qamruddin, Salima
Ozhand, Ali
Taha, Nima
Naqvi, Tasneem Z
author_sort Rafie, Reza
collection PubMed
description BACKGROUND: Use of rate adaptive atrioventricular (AV) delay remains controversial in patients with biventricular (Biv) pacing. We hypothesized that a shortened AV delay would provide optimal diastolic filling by allowing separation of early and late diastolic filling at increased heart rate (HR) in these patients. METHODS: 34 patients (75 ± 11 yrs, 24 M, LVEF 34 ± 12%) with Biv and atrial pacing had optimal AV delay determined at baseline HR by Doppler echocardiography. Atrial pacing rate was then increased in 10 bpm increments to a maximum of 90 bpm. At each atrial pacing HR, optimal AV delay was determined by changing AV delay until best E and A wave separation was seen on mitral inflow pulsed wave (PW) Doppler (defined as increased atrial duration from baseline or prior pacemaker setting with minimal atrial truncation). Left ventricular (LV) systolic ejection time and velocity time integral (VTI) at fixed and optimal AV delay was also tested in 13 patients. Rate adaptive AV delay was then programmed according to the optimal AV delay at the highest HR tested and patients were followed for 1 month to assess change in NYHA class and Quality of Life Score as assessed by Minnesota Living with Heart Failure Questionnaire. RESULTS: 81 AV delays were evaluated at different atrial pacing rates. Optimal AV delay decreased as atrial paced HR increased (201 ms at 60 bpm, 187 ms at 70 bpm, 146 ms at 80 bpm and 123 ms at 90 bpm (ANOVA F-statistic = 15, p = 0.0010). Diastolic filling time (P < 0.001 vs. fixed AV delay), mitral inflow VTI (p < 0.05 vs fixed AV delay) and systolic ejection time (p < 0.02 vs. fixed AV delay) improved by 14%, 5% and 4% respectively at optimal versus fixed AV delay at the same HR. NYHA improved from 2.6 ± 0.7 at baseline to 1.7 ± 0.8 (p < 0.01) 1 month post optimization. Physical component of Quality of Life Score improved from 32 ± 17 at baseline to 25 ± 12 (p < 0.05) at follow up. CONCLUSIONS: Increased heart rate by atrial pacing in patients with Biv pacing causes compromise in diastolic filling time which can be improved by AV delay shortening. Aggressive AV delay shortening was required at heart rates in physiologic range to achieve optimal diastolic filling and was associated with an increase in LV ejection time during optimization. Functional class improved at 1 month post optimization using aggressive AV delay shortening algorithm derived from echo-guidance at the time of Biv pacemaker optimization.
format Online
Article
Text
id pubmed-3292936
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32929362012-03-05 Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing Rafie, Reza Qamruddin, Salima Ozhand, Ali Taha, Nima Naqvi, Tasneem Z Cardiovasc Ultrasound Research BACKGROUND: Use of rate adaptive atrioventricular (AV) delay remains controversial in patients with biventricular (Biv) pacing. We hypothesized that a shortened AV delay would provide optimal diastolic filling by allowing separation of early and late diastolic filling at increased heart rate (HR) in these patients. METHODS: 34 patients (75 ± 11 yrs, 24 M, LVEF 34 ± 12%) with Biv and atrial pacing had optimal AV delay determined at baseline HR by Doppler echocardiography. Atrial pacing rate was then increased in 10 bpm increments to a maximum of 90 bpm. At each atrial pacing HR, optimal AV delay was determined by changing AV delay until best E and A wave separation was seen on mitral inflow pulsed wave (PW) Doppler (defined as increased atrial duration from baseline or prior pacemaker setting with minimal atrial truncation). Left ventricular (LV) systolic ejection time and velocity time integral (VTI) at fixed and optimal AV delay was also tested in 13 patients. Rate adaptive AV delay was then programmed according to the optimal AV delay at the highest HR tested and patients were followed for 1 month to assess change in NYHA class and Quality of Life Score as assessed by Minnesota Living with Heart Failure Questionnaire. RESULTS: 81 AV delays were evaluated at different atrial pacing rates. Optimal AV delay decreased as atrial paced HR increased (201 ms at 60 bpm, 187 ms at 70 bpm, 146 ms at 80 bpm and 123 ms at 90 bpm (ANOVA F-statistic = 15, p = 0.0010). Diastolic filling time (P < 0.001 vs. fixed AV delay), mitral inflow VTI (p < 0.05 vs fixed AV delay) and systolic ejection time (p < 0.02 vs. fixed AV delay) improved by 14%, 5% and 4% respectively at optimal versus fixed AV delay at the same HR. NYHA improved from 2.6 ± 0.7 at baseline to 1.7 ± 0.8 (p < 0.01) 1 month post optimization. Physical component of Quality of Life Score improved from 32 ± 17 at baseline to 25 ± 12 (p < 0.05) at follow up. CONCLUSIONS: Increased heart rate by atrial pacing in patients with Biv pacing causes compromise in diastolic filling time which can be improved by AV delay shortening. Aggressive AV delay shortening was required at heart rates in physiologic range to achieve optimal diastolic filling and was associated with an increase in LV ejection time during optimization. Functional class improved at 1 month post optimization using aggressive AV delay shortening algorithm derived from echo-guidance at the time of Biv pacemaker optimization. BioMed Central 2012-01-24 /pmc/articles/PMC3292936/ /pubmed/22269022 http://dx.doi.org/10.1186/1476-7120-10-2 Text en Copyright ©2012 Rafie et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Rafie, Reza
Qamruddin, Salima
Ozhand, Ali
Taha, Nima
Naqvi, Tasneem Z
Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
title Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
title_full Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
title_fullStr Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
title_full_unstemmed Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
title_short Shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
title_sort shortening of atrioventricular delay at increased atrial paced heart rates improves diastolic filling and functional class in patients with biventricular pacing
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292936/
https://www.ncbi.nlm.nih.gov/pubmed/22269022
http://dx.doi.org/10.1186/1476-7120-10-2
work_keys_str_mv AT rafiereza shorteningofatrioventriculardelayatincreasedatrialpacedheartratesimprovesdiastolicfillingandfunctionalclassinpatientswithbiventricularpacing
AT qamruddinsalima shorteningofatrioventriculardelayatincreasedatrialpacedheartratesimprovesdiastolicfillingandfunctionalclassinpatientswithbiventricularpacing
AT ozhandali shorteningofatrioventriculardelayatincreasedatrialpacedheartratesimprovesdiastolicfillingandfunctionalclassinpatientswithbiventricularpacing
AT tahanima shorteningofatrioventriculardelayatincreasedatrialpacedheartratesimprovesdiastolicfillingandfunctionalclassinpatientswithbiventricularpacing
AT naqvitasneemz shorteningofatrioventriculardelayatincreasedatrialpacedheartratesimprovesdiastolicfillingandfunctionalclassinpatientswithbiventricularpacing