Cargando…
Simultaneous Determination of Sitagliptin Phosphate Monohydrate and Metformin Hydrochloride in Tablets by a Validated UPLC Method
A novel approach was used to develop and validate a rapid, specific, accurate and precise reverse phase ultra performance liquid chromatographic (UPLC) method for the simultaneous determination of Sitagliptin phosphate monohydrate and Metformin hydrochloride in pharmaceutical dosage forms. The chrom...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Österreichische Apotheker-Verlagsgesellschaft
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293359/ https://www.ncbi.nlm.nih.gov/pubmed/22396910 http://dx.doi.org/10.3797/scipharm.1110-13 |
Sumario: | A novel approach was used to develop and validate a rapid, specific, accurate and precise reverse phase ultra performance liquid chromatographic (UPLC) method for the simultaneous determination of Sitagliptin phosphate monohydrate and Metformin hydrochloride in pharmaceutical dosage forms. The chromatographic separation was achieved on Aquity UPLC BEH C8 100 × 2.1 mm, 1.7 μm, column using a buffer consisting of 10 mM potassium dihydrogen phosphate and 2 mM hexane-1-sulfonic acid sodium salt (pH adjusted to 5.50 with diluted phosphoric acid) and acetonitrile as organic solvent in a gradient program. The flow rate was 0.2 mL min(−1) and the detection wavelength was 210 nm. The limit of detection (LOD) for Sitagliptin phosphate monohydrate and Metformin hydrochloride was 0.2 and 0.06 μg mL(−1), respectively. The limit of quantification (LOQ) for Sitagliptin phosphate monohydrate and Metformin hydrochloride was 0.7 and 0.2 μg mL(−1), respectively. This method was validated with respect to linearity, accuracy, precision, specificity and robustness. The method was also found to be stability-indicating. |
---|