Cargando…

CMOS-based carbon nanotube pass-transistor logic integrated circuits

Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Li, Zhang, Zhiyong, Liang, Shibo, Pei, Tian, Wang, Sheng, Li, Yan, Zhou, Weiwei, Liu, Jie, Peng, Lian-Mao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293427/
https://www.ncbi.nlm.nih.gov/pubmed/22334080
http://dx.doi.org/10.1038/ncomms1682
Descripción
Sumario:Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration.