Cargando…

Variation in rates of early development in Haliotis asinina generate competent larvae of different ages

INTRODUCTION: Inter-specific comparisons of metazoan developmental mechanisms have provided a wealth of data concerning the evolution of body form and the generation of morphological novelty. Conversely, studies of intra-specific variation in developmental programs are far fewer. Variation in the ra...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, Daniel J, Degnan, Sandie M, Degnan, Bernard M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293765/
https://www.ncbi.nlm.nih.gov/pubmed/22339806
http://dx.doi.org/10.1186/1742-9994-9-2
Descripción
Sumario:INTRODUCTION: Inter-specific comparisons of metazoan developmental mechanisms have provided a wealth of data concerning the evolution of body form and the generation of morphological novelty. Conversely, studies of intra-specific variation in developmental programs are far fewer. Variation in the rate of development may be an advantage to the many marine invertebrates that posses a biphasic life cycle, where fitness commonly requires the recruitment of planktonically dispersing larvae to patchily distributed benthic environments. RESULTS: We have characterised differences in the rate of development between individuals originating from a synchronised fertilisation event in the tropical abalone Haliotis asinina, a broadcast spawning lecithotrophic vetigastropod. We observed significant differences in the time taken to complete early developmental events (time taken to complete third cleavage and to hatch from the vitelline envelope), mid-larval events (variation in larval shell development) and late larval events (the acquisition of competence to respond to a metamorphosis inducing cue). We also provide estimates of the variation in maternally provided energy reserves that suggest maternal provisioning is unlikely to explain the majority of the variation in developmental rate we report here. CONCLUSIONS: Significant differences in the rates of development exist both within and between cohorts of synchronously fertilised H. asinina gametes. These differences can be detected shortly after fertilisation and generate larvae of increasingly divergent development states. We discuss the significance of our results within an ecological context, the adaptive significance of mechanisms that might maintain this variation, and potential sources of this variation.