Cargando…

Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms

BACKGROUND: Attractive toxic sugar bait (ATSB) methods are a new and promising "attract and kill" strategy for mosquito control. Sugar-feeding female and male mosquitoes attracted to ATSB solutions, either sprayed on plants or in bait stations, ingest an incorporated low-risk toxin such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Beier, John C, Müller, Günter C, Gu, Weidong, Arheart, Kristopher L, Schlein, Yosef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293779/
https://www.ncbi.nlm.nih.gov/pubmed/22297155
http://dx.doi.org/10.1186/1475-2875-11-31
Descripción
Sumario:BACKGROUND: Attractive toxic sugar bait (ATSB) methods are a new and promising "attract and kill" strategy for mosquito control. Sugar-feeding female and male mosquitoes attracted to ATSB solutions, either sprayed on plants or in bait stations, ingest an incorporated low-risk toxin such as boric acid and are killed. This field study in the arid malaria-free oasis environment of Israel compares how the availability of a primary natural sugar source for Anopheles sergentii mosquitoes: flowering Acacia raddiana trees, affects the efficacy of ATSB methods for mosquito control. METHODS: A 47-day field trial was conducted to compare impacts of a single application of ATSB treatment on mosquito densities and age structure in isolated uninhabited sugar-rich and sugar-poor oases relative to an untreated sugar-rich oasis that served as a control. RESULTS: ATSB spraying on patches of non-flowering vegetation around freshwater springs reduced densities of female An. sergentii by 95.2% in the sugar-rich oasis and 98.6% in the sugar-poor oasis; males in both oases were practically eliminated. It reduced daily survival rates of female An. sergentii from 0.77 to 0.35 in the sugar-poor oasis and from 0.85 to 0.51 in the sugar-rich oasis. ATSB treatment reduced the proportion of older more epidemiologically dangerous mosquitoes (three or more gonotrophic cycles) by 100% and 96.7%, respectively, in the sugar-poor and sugar-rich oases. Overall, malaria vectorial capacity was reduced from 11.2 to 0.0 in the sugar-poor oasis and from 79.0 to 0.03 in the sugar-rich oasis. Reduction in vector capacity to negligible levels days after ATSB application in the sugar-poor oasis, but not until after 2 weeks in the sugar-rich oasis, show that natural sugar sources compete with the applied ATSB solutions. CONCLUSION: While readily available natural sugar sources delay ATSB impact, they do not affect overall outcomes because the high frequency of sugar feeding by mosquitoes has an accumulating effect on the probability they will be attracted to and killed by ATSB methods. Operationally, ATSB methods for malaria vector control are highly effective in arid environments regardless of competitive, highly attractive natural sugar sources in their outdoor environment.