Cargando…
Transformation of Botrytis cinerea by direct hyphal blasting or by wound-mediated transformation of sclerotia
BACKGROUND: Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293788/ https://www.ncbi.nlm.nih.gov/pubmed/22188865 http://dx.doi.org/10.1186/1471-2180-11-266 |
Sumario: | BACKGROUND: Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wealth of information toward developing additional tools for molecular transcriptome, proteome and secretome investigations. Nonetheless, transformation protocols have remained a significant bottleneck for this pathogen, hindering functional analysis research in many labs. RESULTS: In this study, we tested three different transformation methods for B. cinerea: electroporation, air-pressure-mediated and sclerotium-mediated transformation. We demonstrate successful transformation with three different DNA constructs using both air-pressure- and sclerotium-mediated transformation. CONCLUSIONS: These transformation methods, which are fast, simple and reproducible, can expedite functional gene analysis of B. cinerea. |
---|