Cargando…

WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster

In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout...

Descripción completa

Detalles Bibliográficos
Autores principales: Lahaye, Liza L., Wouda, Rene R., de Jong, Anja W. M., Fradkin, Lee G., Noordermeer, Jasprina N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293800/
https://www.ncbi.nlm.nih.gov/pubmed/22403643
http://dx.doi.org/10.1371/journal.pone.0032297
_version_ 1782225426482987008
author Lahaye, Liza L.
Wouda, Rene R.
de Jong, Anja W. M.
Fradkin, Lee G.
Noordermeer, Jasprina N.
author_facet Lahaye, Liza L.
Wouda, Rene R.
de Jong, Anja W. M.
Fradkin, Lee G.
Noordermeer, Jasprina N.
author_sort Lahaye, Liza L.
collection PubMed
description In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout evolution. Less is known about the molecules that mediate the steps subsequent to myogenesis, e. g. myotube guidance and attachment to tendon cells. We use the stereotypic pattern of the Drosophila embryonic body wall musculature in genetic approaches to identify novel factors required for muscle attachment site selection. Here, we show that Wnt5 is needed in this process. The lateral transverse muscles frequently overshoot their target attachment sites and stably attach at novel epidermal sites in Wnt5 mutant embryos. Restoration of WNT5 expression in either the muscle or the tendon cell rescues the mutant phenotype. Surprisingly, the novel attachment sites in Wnt5 mutants frequently do not express the Stripe (SR) protein which has been shown to be required for terminal tendon cell differentiation. A muscle bypass phenotype was previously reported for embryos lacking the WNT5 receptor Derailed (DRL). drl and Wnt5 mutant embryos also exhibit axon path finding errors. DRL belongs to the conserved Ryk receptor tyrosine kinase family which includes two other Drosophila orthologs, the Doughnut on 2 (DNT) and Derailed-2 (DRL-2) proteins. We generated a mutant allele of dnt and find that dnt, but not Drl-2, mutant embryos also show a muscle bypass phenotype. Genetic interaction experiments indicate that drl and dnt act together, likely as WNT5 receptors, to control muscle attachment site selection. These results extend previous findings that at least some of the molecular pathways that guide axons towards their targets are also employed for guidance of muscle fibers to their appropriate attachment sites.
format Online
Article
Text
id pubmed-3293800
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32938002012-03-08 WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster Lahaye, Liza L. Wouda, Rene R. de Jong, Anja W. M. Fradkin, Lee G. Noordermeer, Jasprina N. PLoS One Research Article In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout evolution. Less is known about the molecules that mediate the steps subsequent to myogenesis, e. g. myotube guidance and attachment to tendon cells. We use the stereotypic pattern of the Drosophila embryonic body wall musculature in genetic approaches to identify novel factors required for muscle attachment site selection. Here, we show that Wnt5 is needed in this process. The lateral transverse muscles frequently overshoot their target attachment sites and stably attach at novel epidermal sites in Wnt5 mutant embryos. Restoration of WNT5 expression in either the muscle or the tendon cell rescues the mutant phenotype. Surprisingly, the novel attachment sites in Wnt5 mutants frequently do not express the Stripe (SR) protein which has been shown to be required for terminal tendon cell differentiation. A muscle bypass phenotype was previously reported for embryos lacking the WNT5 receptor Derailed (DRL). drl and Wnt5 mutant embryos also exhibit axon path finding errors. DRL belongs to the conserved Ryk receptor tyrosine kinase family which includes two other Drosophila orthologs, the Doughnut on 2 (DNT) and Derailed-2 (DRL-2) proteins. We generated a mutant allele of dnt and find that dnt, but not Drl-2, mutant embryos also show a muscle bypass phenotype. Genetic interaction experiments indicate that drl and dnt act together, likely as WNT5 receptors, to control muscle attachment site selection. These results extend previous findings that at least some of the molecular pathways that guide axons towards their targets are also employed for guidance of muscle fibers to their appropriate attachment sites. Public Library of Science 2012-03-05 /pmc/articles/PMC3293800/ /pubmed/22403643 http://dx.doi.org/10.1371/journal.pone.0032297 Text en Lahaye et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lahaye, Liza L.
Wouda, Rene R.
de Jong, Anja W. M.
Fradkin, Lee G.
Noordermeer, Jasprina N.
WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster
title WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster
title_full WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster
title_fullStr WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster
title_full_unstemmed WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster
title_short WNT5 Interacts with the Ryk Receptors Doughnut and Derailed to Mediate Muscle Attachment Site Selection in Drosophila melanogaster
title_sort wnt5 interacts with the ryk receptors doughnut and derailed to mediate muscle attachment site selection in drosophila melanogaster
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293800/
https://www.ncbi.nlm.nih.gov/pubmed/22403643
http://dx.doi.org/10.1371/journal.pone.0032297
work_keys_str_mv AT lahayelizal wnt5interactswiththerykreceptorsdoughnutandderailedtomediatemuscleattachmentsiteselectionindrosophilamelanogaster
AT woudarener wnt5interactswiththerykreceptorsdoughnutandderailedtomediatemuscleattachmentsiteselectionindrosophilamelanogaster
AT dejonganjawm wnt5interactswiththerykreceptorsdoughnutandderailedtomediatemuscleattachmentsiteselectionindrosophilamelanogaster
AT fradkinleeg wnt5interactswiththerykreceptorsdoughnutandderailedtomediatemuscleattachmentsiteselectionindrosophilamelanogaster
AT noordermeerjasprinan wnt5interactswiththerykreceptorsdoughnutandderailedtomediatemuscleattachmentsiteselectionindrosophilamelanogaster