Cargando…
Unsupervised Analysis of Classical Biomedical Markers: Robustness and Medical Relevance of Patient Clustering Using Bioinformatics Tools
MOTIVATION: It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducib...
Autores principales: | Markovich Gordon, Michal, Moser, Asher M., Rubin, Eitan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293863/ https://www.ncbi.nlm.nih.gov/pubmed/22403607 http://dx.doi.org/10.1371/journal.pone.0029578 |
Ejemplares similares
-
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
por: Duan, Weisi, et al.
Publicado: (2009) -
An unsupervised strategy for biomedical image segmentation
por: Rodríguez, Roberto, et al.
Publicado: (2010) -
Hypercluster: a flexible tool for parallelized unsupervised clustering optimization
por: Blumenberg, Lili, et al.
Publicado: (2020) -
Application of Multiple Unsupervised Models to Validate Clusters Robustness in Characterizing Smallholder Dairy Farmers
por: Nyambo, Devotha G., et al.
Publicado: (2019) -
Unsupervised learning for robust working memory
por: Gu, Jintao, et al.
Publicado: (2022)