Cargando…

Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries

Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functi...

Descripción completa

Detalles Bibliográficos
Autores principales: Clearwater, Michael J., Luo, Zhiwei, Ong, Sam Eng Chye, Blattmann, Peter, Thorp, T. Grant
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295381/
https://www.ncbi.nlm.nih.gov/pubmed/22155631
http://dx.doi.org/10.1093/jxb/err352
Descripción
Sumario:Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis ‘Hort16A’) exhibiting a pre-harvest ‘shrivel’ disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (D(a)) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high D(a). Phloem flows were required for growth, with gradual recovery after a step increase in D(a). Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to D(a)-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined.