Cargando…
Erythromycin A dimethyl sulfoxide disolvate 1.43-hydrate
The title compound, C(37)H(67)NO(13)·2C(2)H(6)OS·1.43H(2)O, is a macrolide antibiotic with better solubility and better dermal penetration abilities than erythromycin A itself. The asymmetric unit of this form contains one erythromycin A molecule, two dimethyl sulfoxide (DMSO) solvent molecules,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295479/ https://www.ncbi.nlm.nih.gov/pubmed/22412590 http://dx.doi.org/10.1107/S1600536812005223 |
Sumario: | The title compound, C(37)H(67)NO(13)·2C(2)H(6)OS·1.43H(2)O, is a macrolide antibiotic with better solubility and better dermal penetration abilities than erythromycin A itself. The asymmetric unit of this form contains one erythromycin A molecule, two dimethyl sulfoxide (DMSO) solvent molecules, a fully occupied water molecule and a partially occupied water molecule with an occupancy factor of 0.432 (11). The 14-membered ring of the erythronolide fragment has a conformation which differs considerably from that in erythromycin A dihydrate [Stephenson, Stowell, Toma, Pfeiffer & Byrn (1997 ▶). J. Pharm. Sci. 86, 1239–1244]. One of the two DMSO molecules is disordered over two orientations; the orientation depends on the presence or absence of the second, partially occupied, water molecule. In the crystal, erythromycin molecules are connected by O—H⋯O hydrogen bonds involving the hydroxy groups and the fully occupied water molecule to form layers parallel to (010). These layers are connected along the b-axis direction only by a possible hydrogen-bonding contact involving the partially occupied water molecule. |
---|