Cargando…

Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons

BACKGROUND: Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet f...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwok, Jessica CF, Yuen, Ying-Lai, Lau, Wai-Kit, Zhang, Fu-Xing, Fawcett, James W, Chan, Ying-Shing, Shum, Daisy KY
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295737/
https://www.ncbi.nlm.nih.gov/pubmed/22305371
http://dx.doi.org/10.1186/1749-8104-7-6
_version_ 1782225631843450880
author Kwok, Jessica CF
Yuen, Ying-Lai
Lau, Wai-Kit
Zhang, Fu-Xing
Fawcett, James W
Chan, Ying-Shing
Shum, Daisy KY
author_facet Kwok, Jessica CF
Yuen, Ying-Lai
Lau, Wai-Kit
Zhang, Fu-Xing
Fawcett, James W
Chan, Ying-Shing
Shum, Daisy KY
author_sort Kwok, Jessica CF
collection PubMed
description BACKGROUND: Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet formed. Among the early-born neurons, the vestibular nucleus (VN) neurons initiate commissural projections soon after generation at E12.5 and reach the contralateral target by E15.5 in the rat hindbrain. We therefore exploited 24-hour cultures (1 day in vitro (DIV)) of the rat embryos and chondroitinase ABC treatment of the hindbrain matrix to reveal the role of CS moieties in axonal initiation and projection in the early hindbrain. RESULTS: DiI tracing from the VN at E12.5((+1 DIV) )showed contralaterally projecting fibers assuming fascicles that hardly reached the midline in the controls. In the enzyme-treated embryos, the majority of fibers were unfasciculated as they crossed the midline at 90°. At E13.5((+1 DIV)), the commissural projections formed fascicles and crossed the midline in the controls. Enzyme treatment apparently did not affect the pioneer axons that had advanced as thick fascicles normal to the midline and beyond, towards the contralateral VN. Later projections, however, traversed the enzyme-treated matrix as unfasciculated fibers, deviated from the normal course crossing the midline at various angles and extending beyond the contralateral VN. This suggests that CSs also limit the course of the later projections, which otherwise would be attracted to alternative targets. CONCLUSIONS: CS moieties in the early hindbrain therefore control the course and fasciculation of axonal projections and the timing of axonal arrival at the target.
format Online
Article
Text
id pubmed-3295737
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32957372012-03-07 Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons Kwok, Jessica CF Yuen, Ying-Lai Lau, Wai-Kit Zhang, Fu-Xing Fawcett, James W Chan, Ying-Shing Shum, Daisy KY Neural Dev Research Article BACKGROUND: Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet formed. Among the early-born neurons, the vestibular nucleus (VN) neurons initiate commissural projections soon after generation at E12.5 and reach the contralateral target by E15.5 in the rat hindbrain. We therefore exploited 24-hour cultures (1 day in vitro (DIV)) of the rat embryos and chondroitinase ABC treatment of the hindbrain matrix to reveal the role of CS moieties in axonal initiation and projection in the early hindbrain. RESULTS: DiI tracing from the VN at E12.5((+1 DIV) )showed contralaterally projecting fibers assuming fascicles that hardly reached the midline in the controls. In the enzyme-treated embryos, the majority of fibers were unfasciculated as they crossed the midline at 90°. At E13.5((+1 DIV)), the commissural projections formed fascicles and crossed the midline in the controls. Enzyme treatment apparently did not affect the pioneer axons that had advanced as thick fascicles normal to the midline and beyond, towards the contralateral VN. Later projections, however, traversed the enzyme-treated matrix as unfasciculated fibers, deviated from the normal course crossing the midline at various angles and extending beyond the contralateral VN. This suggests that CSs also limit the course of the later projections, which otherwise would be attracted to alternative targets. CONCLUSIONS: CS moieties in the early hindbrain therefore control the course and fasciculation of axonal projections and the timing of axonal arrival at the target. BioMed Central 2012-02-03 /pmc/articles/PMC3295737/ /pubmed/22305371 http://dx.doi.org/10.1186/1749-8104-7-6 Text en Copyright ©2012 Kwok et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Kwok, Jessica CF
Yuen, Ying-Lai
Lau, Wai-Kit
Zhang, Fu-Xing
Fawcett, James W
Chan, Ying-Shing
Shum, Daisy KY
Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
title Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
title_full Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
title_fullStr Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
title_full_unstemmed Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
title_short Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
title_sort chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295737/
https://www.ncbi.nlm.nih.gov/pubmed/22305371
http://dx.doi.org/10.1186/1749-8104-7-6
work_keys_str_mv AT kwokjessicacf chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons
AT yuenyinglai chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons
AT lauwaikit chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons
AT zhangfuxing chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons
AT fawcettjamesw chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons
AT chanyingshing chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons
AT shumdaisyky chondroitinsulfatesinthedevelopingrathindbrainconfinecommissuralprojectionsofvestibularnuclearneurons