Cargando…

Fashion or Science? How Can Orthodox Biomedicine Explain the Body's Function and Regulation?

The cost of diagnosing and treating disease continues to rise inexorably. Almost every new test adds to the complexity and cost of healthcare. There is a need for better and less expensive screening, diagnostic and scanning techniques. Medical scanning technologies are based upon the body's res...

Descripción completa

Detalles Bibliográficos
Autores principales: Ewing, Graham Wilfred, Grakov, Igor Gennadyevich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296319/
https://www.ncbi.nlm.nih.gov/pubmed/22408748
http://dx.doi.org/10.4103/1947-2714.93374
Descripción
Sumario:The cost of diagnosing and treating disease continues to rise inexorably. Almost every new test adds to the complexity and cost of healthcare. There is a need for better and less expensive screening, diagnostic and scanning techniques. Medical scanning technologies are based upon the body's response to an external stimulus e.g. heat, ultrasound, X-rays, magnetic resonance, etc. Biomarker and histopathology tests have inherent limitations because diseases are often polygenic and/or influence the function of multiple physiological systems. The results are compared with expected norms. This makes it difficult to diagnose the onset of disease. Such techniques measure only what the clinician wants or expects to see. A technique which can provide more information, regarding the influence of a medical condition upon the body's whole function, may be invaluable to the clinician. There is not yet a clear understanding of how the body regulates its function. A greater understanding of how the body responds to sensory input, in particular to light, has been incorporated into a mathematical model of the physiological systems developed by I.G. Grakov. This has been incorporated into a cognitive technology which improves the understanding of how the body regulates its function and has led to the development of a better method for the diagnosis and treatment of disease(s). This technique, virtual scanning, appears able to diagnose at different levels of physiological significance i.e. as systems, organs, cells (as morphologies) and molecular (as pathologies). It may be a major scientific development, conceivably more advanced than biomarker techniques, with the potential to provide far more information about a patient's health. It may have the potential to significantly reduce the complexity and cost of healthcare. This article reviews the available literature.