Cargando…

Dusty: an assistive mobile manipulator that retrieves dropped objects for people with motor impairments

People with physical disabilities have ranked object retrieval as a high priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robo...

Descripción completa

Detalles Bibliográficos
Autores principales: King, Chih-Hung, Chen, Tiffany L, Fan, Zhengqin, Glass, Jonathan D, Kemp, Charles C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Informa Healthcare 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296521/
https://www.ncbi.nlm.nih.gov/pubmed/22013888
http://dx.doi.org/10.3109/17483107.2011.615374
Descripción
Sumario:People with physical disabilities have ranked object retrieval as a high priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robot's high success rate (98.4%) when autonomously grasping 25 objects considered important by people with amyotrophic lateral sclerosis (ALS). We tested the robot with each object in five different configurations on five types of flooring. We then present the results of an experiment in which 20 people with ALS operated Dusty. Participants teleoperated Dusty to move around an obstacle, pick up an object, and deliver the object to themselves. They successfully completed this task in 59 out of 60 trials (3 trials each) with a mean completion time of 61.4 seconds (SD=20.5 seconds), and reported high overall satisfaction using Dusty (7-point Likert scale; 6.8 SD=0.6). Participants rated Dusty to be significantly easier to use than their own hands, asking family members, and using mechanical reachers (p < 0.03, paired t-tests). 14 of the 20 participants reported that they would prefer using Dusty over their current methods.