Cargando…

Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm

Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μ(a), transport mean free path [Formula: see text] , and scattering coefficient...

Descripción completa

Detalles Bibliográficos
Autores principales: Akarçay, H. Günhan, Preisser, Stefan, Frenz, Martin, Rička, Jaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296531/
https://www.ncbi.nlm.nih.gov/pubmed/22435091
http://dx.doi.org/10.1364/BOE.3.000418
_version_ 1782225742127431680
author Akarçay, H. Günhan
Preisser, Stefan
Frenz, Martin
Rička, Jaro
author_facet Akarçay, H. Günhan
Preisser, Stefan
Frenz, Martin
Rička, Jaro
author_sort Akarçay, H. Günhan
collection PubMed
description Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μ(a), transport mean free path [Formula: see text] , and scattering coefficient μ(s) of a TiO(2) in gelatin phantom intended for use in optoacoustic imaging. For the determination of the key parameters μ(a) and [Formula: see text] , we employ a variant of time of flight measurements, where fiber optodes are immersed into the phantom to minimize the influence of boundaries. The robustness of the method was verified with Monte Carlo simulations, where the experimentally obtained values served as input parameters for the simulations. The excellent agreement between simulations and experiments confirmed the reliability of the results. The parameters determined at 780 nm are [Formula: see text] , [Formula: see text] , [Formula: see text] , and [Formula: see text] The asymmetry parameter g obtained from the parameters [Formula: see text] and [Formula: see text] is 0.93, which indicates that the scattering entities are not bare TiO(2) particles but large sparse clusters. The interaction between the scattering particles and the gelatin matrix should be taken into account when developing such phantoms.
format Online
Article
Text
id pubmed-3296531
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-32965312012-03-20 Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm Akarçay, H. Günhan Preisser, Stefan Frenz, Martin Rička, Jaro Biomed Opt Express Calibration, Validation and Phantom Studies Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μ(a), transport mean free path [Formula: see text] , and scattering coefficient μ(s) of a TiO(2) in gelatin phantom intended for use in optoacoustic imaging. For the determination of the key parameters μ(a) and [Formula: see text] , we employ a variant of time of flight measurements, where fiber optodes are immersed into the phantom to minimize the influence of boundaries. The robustness of the method was verified with Monte Carlo simulations, where the experimentally obtained values served as input parameters for the simulations. The excellent agreement between simulations and experiments confirmed the reliability of the results. The parameters determined at 780 nm are [Formula: see text] , [Formula: see text] , [Formula: see text] , and [Formula: see text] The asymmetry parameter g obtained from the parameters [Formula: see text] and [Formula: see text] is 0.93, which indicates that the scattering entities are not bare TiO(2) particles but large sparse clusters. The interaction between the scattering particles and the gelatin matrix should be taken into account when developing such phantoms. Optical Society of America 2012-02-07 /pmc/articles/PMC3296531/ /pubmed/22435091 http://dx.doi.org/10.1364/BOE.3.000418 Text en ©2012 Optical Society of America http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.
spellingShingle Calibration, Validation and Phantom Studies
Akarçay, H. Günhan
Preisser, Stefan
Frenz, Martin
Rička, Jaro
Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm
title Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm
title_full Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm
title_fullStr Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm
title_full_unstemmed Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm
title_short Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm
title_sort determining the optical properties of a gelatin‑tio(2) phantom at 780 nm
topic Calibration, Validation and Phantom Studies
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296531/
https://www.ncbi.nlm.nih.gov/pubmed/22435091
http://dx.doi.org/10.1364/BOE.3.000418
work_keys_str_mv AT akarcayhgunhan determiningtheopticalpropertiesofagelatintio2phantomat780nm
AT preisserstefan determiningtheopticalpropertiesofagelatintio2phantomat780nm
AT frenzmartin determiningtheopticalpropertiesofagelatintio2phantomat780nm
AT rickajaro determiningtheopticalpropertiesofagelatintio2phantomat780nm