Cargando…

Wavelet denoising of multiframe optical coherence tomography data

We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and...

Descripción completa

Detalles Bibliográficos
Autores principales: Mayer, Markus A., Borsdorf, Anja, Wagner, Martin, Hornegger, Joachim, Mardin, Christian Y., Tornow, Ralf P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296543/
https://www.ncbi.nlm.nih.gov/pubmed/22435103
http://dx.doi.org/10.1364/BOE.3.000572
Descripción
Sumario:We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.