Cargando…
Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway
BACKGROUND: Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalyt...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296614/ https://www.ncbi.nlm.nih.gov/pubmed/22293287 http://dx.doi.org/10.1186/1741-7007-10-5 |
_version_ | 1782225758916182016 |
---|---|
author | Dastidar, Eeshita G Dayer, Guillem Holland, Zoe M Dorin-Semblat, Dominique Claes, Aurélie Chêne, Arnaud Sharma, Amit Hamelin, Romain Moniatte, Marc Lopez-Rubio, Jose-Juan Scherf, Artur Doerig, Christian |
author_facet | Dastidar, Eeshita G Dayer, Guillem Holland, Zoe M Dorin-Semblat, Dominique Claes, Aurélie Chêne, Arnaud Sharma, Amit Hamelin, Romain Moniatte, Marc Lopez-Rubio, Jose-Juan Scherf, Artur Doerig, Christian |
author_sort | Dastidar, Eeshita G |
collection | PubMed |
description | BACKGROUND: Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2. RESULTS: We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro. CONCLUSIONS: Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites. |
format | Online Article Text |
id | pubmed-3296614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32966142012-03-08 Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway Dastidar, Eeshita G Dayer, Guillem Holland, Zoe M Dorin-Semblat, Dominique Claes, Aurélie Chêne, Arnaud Sharma, Amit Hamelin, Romain Moniatte, Marc Lopez-Rubio, Jose-Juan Scherf, Artur Doerig, Christian BMC Biol Research Article BACKGROUND: Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2. RESULTS: We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro. CONCLUSIONS: Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites. BioMed Central 2012-01-31 /pmc/articles/PMC3296614/ /pubmed/22293287 http://dx.doi.org/10.1186/1741-7007-10-5 Text en Copyright ©2012 Dastidar et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dastidar, Eeshita G Dayer, Guillem Holland, Zoe M Dorin-Semblat, Dominique Claes, Aurélie Chêne, Arnaud Sharma, Amit Hamelin, Romain Moniatte, Marc Lopez-Rubio, Jose-Juan Scherf, Artur Doerig, Christian Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway |
title | Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway |
title_full | Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway |
title_fullStr | Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway |
title_full_unstemmed | Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway |
title_short | Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway |
title_sort | involvement of plasmodium falciparum protein kinase ck2 in the chromatin assembly pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296614/ https://www.ncbi.nlm.nih.gov/pubmed/22293287 http://dx.doi.org/10.1186/1741-7007-10-5 |
work_keys_str_mv | AT dastidareeshitag involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT dayerguillem involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT hollandzoem involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT dorinsemblatdominique involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT claesaurelie involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT chenearnaud involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT sharmaamit involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT hamelinromain involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT moniattemarc involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT lopezrubiojosejuan involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT scherfartur involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway AT doerigchristian involvementofplasmodiumfalciparumproteinkinaseck2inthechromatinassemblypathway |