Cargando…
Self-Assembling Nanocomplexes by combining Ferumoxytol, Heparin And Protamine For Cell Tracking by MRI
We report on a novel and straightforward magnetic cell labeling approach that combines three FDA-approved drugs, ferumoxytol (F), heparin (H) and protamine (P) in serum free media to form self-assembling nanocomplexes that effectively label cells for in vivo MRI. We observed that the HPF nanocomplex...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296876/ https://www.ncbi.nlm.nih.gov/pubmed/22366951 http://dx.doi.org/10.1038/nm.2666 |
Sumario: | We report on a novel and straightforward magnetic cell labeling approach that combines three FDA-approved drugs, ferumoxytol (F), heparin (H) and protamine (P) in serum free media to form self-assembling nanocomplexes that effectively label cells for in vivo MRI. We observed that the HPF nanocomplexes were stable in serum free cell culture media. HPF nanocomplexes exhibited a three-fold increase in T2 relaxivity compared to F. Electron Microscopy revealed internalized HPF within endosomes, confirmed by Prussian blue staining of labeled cells. There was no long-term effect or toxicity on cellular physiology or function of HPF-labeled hematopoietic stem cells, bone marrow stromal cells, neural stem cells, and T-cells when compared to controls. In vivo MRI detected 1000 HPF-labeled cells implanted in rat brains. HPF labeling method should facilitate the monitoring by MRI of infused or implanted cells in clinical trials. |
---|