Cargando…
Development of 3D Force Sensors for Nanopositioning and Nanomeasuring Machine
In this contribution, we report on different miniaturized bulk micro machined three-axes piezoresistive force sensors for nanopositioning and nanomeasuring machine (NPMM). Various boss membrane structures, such as one boss full/cross, five boss full/cross and swastika membranes, were used as a basic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297152/ https://www.ncbi.nlm.nih.gov/pubmed/22412308 http://dx.doi.org/10.3390/s90503228 |
Sumario: | In this contribution, we report on different miniaturized bulk micro machined three-axes piezoresistive force sensors for nanopositioning and nanomeasuring machine (NPMM). Various boss membrane structures, such as one boss full/cross, five boss full/cross and swastika membranes, were used as a basic structure for the force sensors. All designs have 16 p-type diffused piezoresistors on the surface of the membrane. Sensitivities in x, y and z directions are measured. Simulated and measured stiffness ratio in horizontal to vertical direction is measured for each design. Effect of the length of the stylus on H:V stiffness ratio is studied. Minimum and maximum deflection and resonance frequency are measured for all designs. The sensors were placed in a nanopositioning and nanomeasuring machine and one point measurements were performed for all the designs. Lastly the application of the sensor is shown, where dimension of a cube is measured using the sensor. |
---|