Cargando…

Population decrease of Scirpophaga incertulas Walker (Lepidoptera Pyralidae) under climate warming

Scirpophaga incertulas Walker is an important agricultural pest in Asia. Only few studies are available on its long-term population dynamics under climate warming. In this study, we used the linear and generalized additive models (GAMs) to analyze the historical dataset of >50 years on this pest...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Peijian, Zhong, Ling, Sandhu, Hardev S, Ge, Feng, Xu, Xiaoming, Chen, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297178/
https://www.ncbi.nlm.nih.gov/pubmed/22408726
http://dx.doi.org/10.1002/ece3.69
Descripción
Sumario:Scirpophaga incertulas Walker is an important agricultural pest in Asia. Only few studies are available on its long-term population dynamics under climate warming. In this study, we used the linear and generalized additive models (GAMs) to analyze the historical dataset of >50 years on this pest at Xinfeng County of Jiangxi Province, China. The main objective of this study was to explore the effects of density (delayed) dependence and minimum annual temperature (MAT), which indirectly reflects climate warming, on the population dynamics of this pest. We found that both density dependence and MAT have significant influence on the annual population growth rate. The GAMs had relatively better applicability to the dataset than the linear models. Nonparametric model provided satisfactory goodness-of-fit (R(2) > 0.5). At Xinfeng County, the MAT had a significant effect on the annual population growth rate of S. incertulas. The annual population growth rate of S. incertulas decreased with increase in MAT. Therefore, S. incertulas population becomes smaller and smaller in Southern China due to climate warming. The current study has two contributions: (1) providing a suitable method for predicting the annual population growth rate of S. incertulas, and (2) demonstrating that climate warming could decrease the S. incertulas population.