Cargando…
Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub
Ericoid mycorrhizal fungi (ERM) may specialize in capturing nutrients from their host's litter as a strategy for regulating nutrient cycles in terrestrial ecosystems. In spite of their potential significance, we know little about the structure of ERM fungal communities and the genetic basis of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297179/ https://www.ncbi.nlm.nih.gov/pubmed/22408727 http://dx.doi.org/10.1002/ece3.67 |
_version_ | 1782225834082304000 |
---|---|
author | Wurzburger, Nina Higgins, Brian P Hendrick, Ronald L |
author_facet | Wurzburger, Nina Higgins, Brian P Hendrick, Ronald L |
author_sort | Wurzburger, Nina |
collection | PubMed |
description | Ericoid mycorrhizal fungi (ERM) may specialize in capturing nutrients from their host's litter as a strategy for regulating nutrient cycles in terrestrial ecosystems. In spite of their potential significance, we know little about the structure of ERM fungal communities and the genetic basis of their saprotrophic traits (e.g., genes encoding extracellular enzymes). Rhododendron maximum is a model ERM understory shrub that influences the nutrient cycles of montane hardwood forests in the southern Appalachians (North Carolina, USA). We sampled ERM roots of R. maximum from organic and mineral soil horizons and identified root fungi by amplifying and sequencing internal transcribed spacer (ITS) ribosomal DNA (rDNA) collected from cultures and clones. We observed 71 fungal taxa on ERM roots, including known symbionts Rhizoscyphus ericae and Oidiodendron maius, putative symbionts from the Helotiales, Chaetothyriales, and Sebacinales, ectomycorrhizal symbionts, and saprotrophs. Supporting the idea that ERM fungi are adept saprotrophs, richness of root-fungi was greater in organic than in mineral soil horizons. To study the genetic diversity of oxidative enzymes that contribute to decomposition, we amplified and sequenced a portion of genes encoding multicopper oxidases (MCOs) from ERM ascomycetes. Most fungi possessed multiple copies of MCO sequences with strong similarities to known ferroxidases and laccases. Our findings indicate that R. maximum associates with a taxonomically and ecologically diverse fungal community. The study of MCO gene diversity and expression may be useful for understanding how ERM root fungi regulate the cycling of nutrients between the host plant and the soil environment. |
format | Online Article Text |
id | pubmed-3297179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-32971792012-03-09 Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub Wurzburger, Nina Higgins, Brian P Hendrick, Ronald L Ecol Evol Original Research Ericoid mycorrhizal fungi (ERM) may specialize in capturing nutrients from their host's litter as a strategy for regulating nutrient cycles in terrestrial ecosystems. In spite of their potential significance, we know little about the structure of ERM fungal communities and the genetic basis of their saprotrophic traits (e.g., genes encoding extracellular enzymes). Rhododendron maximum is a model ERM understory shrub that influences the nutrient cycles of montane hardwood forests in the southern Appalachians (North Carolina, USA). We sampled ERM roots of R. maximum from organic and mineral soil horizons and identified root fungi by amplifying and sequencing internal transcribed spacer (ITS) ribosomal DNA (rDNA) collected from cultures and clones. We observed 71 fungal taxa on ERM roots, including known symbionts Rhizoscyphus ericae and Oidiodendron maius, putative symbionts from the Helotiales, Chaetothyriales, and Sebacinales, ectomycorrhizal symbionts, and saprotrophs. Supporting the idea that ERM fungi are adept saprotrophs, richness of root-fungi was greater in organic than in mineral soil horizons. To study the genetic diversity of oxidative enzymes that contribute to decomposition, we amplified and sequenced a portion of genes encoding multicopper oxidases (MCOs) from ERM ascomycetes. Most fungi possessed multiple copies of MCO sequences with strong similarities to known ferroxidases and laccases. Our findings indicate that R. maximum associates with a taxonomically and ecologically diverse fungal community. The study of MCO gene diversity and expression may be useful for understanding how ERM root fungi regulate the cycling of nutrients between the host plant and the soil environment. Blackwell Publishing Ltd 2012-01 /pmc/articles/PMC3297179/ /pubmed/22408727 http://dx.doi.org/10.1002/ece3.67 Text en © 2011 The Authors. Published by Blackwell Publishing Ltd. http://creativecommons.org/licenses/by/2.5/ This is an open access article under the terms of the Creative Commons Attribution Non Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Wurzburger, Nina Higgins, Brian P Hendrick, Ronald L Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
title | Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
title_full | Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
title_fullStr | Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
title_full_unstemmed | Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
title_short | Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
title_sort | ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297179/ https://www.ncbi.nlm.nih.gov/pubmed/22408727 http://dx.doi.org/10.1002/ece3.67 |
work_keys_str_mv | AT wurzburgernina ericoidmycorrhizalrootfungiandtheirmulticopperoxidasesfromatemperateforestshrub AT higginsbrianp ericoidmycorrhizalrootfungiandtheirmulticopperoxidasesfromatemperateforestshrub AT hendrickronaldl ericoidmycorrhizalrootfungiandtheirmulticopperoxidasesfromatemperateforestshrub |