Cargando…
A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis
Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of bot...
Autores principales: | Busser, Brian W., Taher, Leila, Kim, Yongsok, Tansey, Terese, Bloom, Molly J., Ovcharenko, Ivan, Michelson, Alan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297574/ https://www.ncbi.nlm.nih.gov/pubmed/22412381 http://dx.doi.org/10.1371/journal.pgen.1002531 |
Ejemplares similares
-
Differential regulation of mesodermal gene expression by Drosophila cell type-specific Forkhead transcription factors
por: Zhu, Xianmin, et al.
Publicado: (2012) -
Contribution of Distinct Homeodomain DNA Binding Specificities to Drosophila Embryonic Mesodermal Cell-Specific Gene Expression Programs
por: Busser, Brian W., et al.
Publicado: (2013) -
Enhancer modeling uncovers transcriptional signatures of individual cardiac cell states in Drosophila
por: Busser, Brian W., et al.
Publicado: (2015) -
Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification
por: Ahmad, Shaad M., et al.
Publicado: (2014) -
Variable locus length in the human genome leads to ascertainment bias in functional inference for non-coding elements
por: Taher, Leila, et al.
Publicado: (2009)