Cargando…

West Nile Virus Risk Assessment and the Bridge Vector Paradigm

In the northeast United States, control of West Nile virus (WNV) vectors has been unfocused because of a lack of accurate knowledge about the roles different mosquitoes play in WNV transmission. We analyzed the risk posed by 10 species of mosquitoes for transmitting WNV to humans by using a novel ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Kilpatrick, A. Marm, Kramer, Laura D., Campbell, Scott R., Alleyne, E. Oscar, Dobson, Andrew P., Daszak, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centers for Disease Control and Prevention 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298247/
https://www.ncbi.nlm.nih.gov/pubmed/15757558
http://dx.doi.org/10.3201/eid1103.040364
Descripción
Sumario:In the northeast United States, control of West Nile virus (WNV) vectors has been unfocused because of a lack of accurate knowledge about the roles different mosquitoes play in WNV transmission. We analyzed the risk posed by 10 species of mosquitoes for transmitting WNV to humans by using a novel risk-assessment measure that combines information on the abundance, infection prevalence, vector competence, and biting behavior of vectors. This analysis suggests that 2 species (Culex pipiens L. and Cx. restuans Theobald [Diptera: Cilicidae]) not previously considered important in transmitting WNV to humans may be responsible for up to 80% of human WNV infections in this region. This finding suggests that control efforts should be focused on these species which may reduce effects on nontarget wetland organisms. Our risk measure has broad applicability to other regions and diseases and can be adapted for use as a predictive tool of future human WNV infections.