Cargando…
Gene Selection using a High-Dimensional Regression Model with Microarrays in Cancer Prognostic Studies
Mining of gene expression data to identify genes associated with patient survival is an ongoing problem in cancer prognostic studies using microarrays in order to use such genes to achieve more accurate prognoses. The least absolute shrinkage and selection operator (lasso) is often used for gene sel...
Autores principales: | Kaneko, Shuhei, Hirakawa, Akihiro, Hamada, Chikuma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298378/ https://www.ncbi.nlm.nih.gov/pubmed/22442625 http://dx.doi.org/10.4137/CIN.S9048 |
Ejemplares similares
-
Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data
por: Kaneko, Shuhei, et al.
Publicado: (2015) -
A New Test Statistic Based on Shrunken Sample Variance for Identifying Differentially Expressed Genes in Small Microarray Experiments
por: Hirakawa, Akihiro, et al.
Publicado: (2008) -
Estimating the False Discovery Rate Using Mixed Normal Distribution for Identifying Differentially Expressed Genes in Microarray Data Analysis
por: Hirakawa, Akihiro, et al.
Publicado: (2008) -
Prediction of Early Breast Cancer Metastasis from DNA Microarray Data Using High-Dimensional Cox Regression Models
por: Zemmour, Christophe, et al.
Publicado: (2015) -
High-dimensional microarray data analysis: cancer gene diagnosis and malignancy indexes by microarray
por: Shinmura, Shuichi
Publicado: (2019)