Cargando…
Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets
BACKGROUND: A key question when analyzing high throughput data is whether the information provided by the measured biological entities (gene, metabolite expression for example) is related to the experimental conditions, or, rather, to some interfering signals, such as experimental bias or artefacts....
Autores principales: | Yao, Fangzhou, Coquery, Jeff, Lê Cao, Kim-Anh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298499/ https://www.ncbi.nlm.nih.gov/pubmed/22305354 http://dx.doi.org/10.1186/1471-2105-13-24 |
Ejemplares similares
-
Principal Manifolds for Data Visualization and Dimension Reduction
por: Gorban, A N, et al.
Publicado: (2007) -
Decomposing the Apoptosis Pathway Into Biologically Interpretable
Principal Components
por: Wang, Min, et al.
Publicado: (2018) -
Construction Formula of Biological Age Using the Principal Component Analysis
por: Jia, Linpei, et al.
Publicado: (2016) -
Hierarchical association of COPD to principal genetic components of biological systems
por: Carlin, Daniel E., et al.
Publicado: (2023) -
Using predictive specificity to determine when gene set analysis is biologically meaningful
por: Ballouz, Sara, et al.
Publicado: (2017)