Cargando…
Integration of gene expression data with prior knowledge for network analysis and validation
BACKGROUND: Reconstruction of protein-protein interaction or metabolic networks based on expression data often involves in silico predictions, while on the other hand, there are unspecific networks of in vivo interactions derived from knowledge bases. We analyze networks designed to come as close as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298547/ https://www.ncbi.nlm.nih.gov/pubmed/22123172 http://dx.doi.org/10.1186/1756-0500-4-520 |
_version_ | 1782226017653358592 |
---|---|
author | Ante, Michael Wingender, Edgar Fuchs, Mathias |
author_facet | Ante, Michael Wingender, Edgar Fuchs, Mathias |
author_sort | Ante, Michael |
collection | PubMed |
description | BACKGROUND: Reconstruction of protein-protein interaction or metabolic networks based on expression data often involves in silico predictions, while on the other hand, there are unspecific networks of in vivo interactions derived from knowledge bases. We analyze networks designed to come as close as possible to data measured in vivo, both with respect to the set of nodes which were taken to be expressed in experiment as well as with respect to the interactions between them which were taken from manually curated databases RESULTS: A signaling network derived from the TRANSPATH database and a metabolic network derived from KEGG LIGAND are each filtered onto expression data from breast cancer (SAGE) considering different levels of restrictiveness in edge and vertex selection. We perform several validation steps, in particular we define pathway over-representation tests based on refined null models to recover functional modules. The prominent role of the spindle checkpoint-related pathways in breast cancer is exhibited. High-ranking key nodes cluster in functional groups retrieved from literature. Results are consistent between several functional and topological analyses and between signaling and metabolic aspects. CONCLUSIONS: This construction involved as a crucial step the passage to a mammalian protein identifier format as well as to a reaction-based semantics of metabolism. This yielded good connectivity but also led to the need to perform benchmark tests to exclude loss of essential information. Such validation, albeit tedious due to limitations of existing methods, turned out to be informative, and in particular provided biological insights as well as information on the degrees of coherence of the networks despite fragmentation of experimental data. Key node analysis exploited the networks for potentially interesting proteins in view of drug target prediction. |
format | Online Article Text |
id | pubmed-3298547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32985472012-03-12 Integration of gene expression data with prior knowledge for network analysis and validation Ante, Michael Wingender, Edgar Fuchs, Mathias BMC Res Notes Research Article BACKGROUND: Reconstruction of protein-protein interaction or metabolic networks based on expression data often involves in silico predictions, while on the other hand, there are unspecific networks of in vivo interactions derived from knowledge bases. We analyze networks designed to come as close as possible to data measured in vivo, both with respect to the set of nodes which were taken to be expressed in experiment as well as with respect to the interactions between them which were taken from manually curated databases RESULTS: A signaling network derived from the TRANSPATH database and a metabolic network derived from KEGG LIGAND are each filtered onto expression data from breast cancer (SAGE) considering different levels of restrictiveness in edge and vertex selection. We perform several validation steps, in particular we define pathway over-representation tests based on refined null models to recover functional modules. The prominent role of the spindle checkpoint-related pathways in breast cancer is exhibited. High-ranking key nodes cluster in functional groups retrieved from literature. Results are consistent between several functional and topological analyses and between signaling and metabolic aspects. CONCLUSIONS: This construction involved as a crucial step the passage to a mammalian protein identifier format as well as to a reaction-based semantics of metabolism. This yielded good connectivity but also led to the need to perform benchmark tests to exclude loss of essential information. Such validation, albeit tedious due to limitations of existing methods, turned out to be informative, and in particular provided biological insights as well as information on the degrees of coherence of the networks despite fragmentation of experimental data. Key node analysis exploited the networks for potentially interesting proteins in view of drug target prediction. BioMed Central 2011-11-28 /pmc/articles/PMC3298547/ /pubmed/22123172 http://dx.doi.org/10.1186/1756-0500-4-520 Text en Copyright ©2011 Ante et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ante, Michael Wingender, Edgar Fuchs, Mathias Integration of gene expression data with prior knowledge for network analysis and validation |
title | Integration of gene expression data with prior knowledge for network analysis and validation |
title_full | Integration of gene expression data with prior knowledge for network analysis and validation |
title_fullStr | Integration of gene expression data with prior knowledge for network analysis and validation |
title_full_unstemmed | Integration of gene expression data with prior knowledge for network analysis and validation |
title_short | Integration of gene expression data with prior knowledge for network analysis and validation |
title_sort | integration of gene expression data with prior knowledge for network analysis and validation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298547/ https://www.ncbi.nlm.nih.gov/pubmed/22123172 http://dx.doi.org/10.1186/1756-0500-4-520 |
work_keys_str_mv | AT antemichael integrationofgeneexpressiondatawithpriorknowledgefornetworkanalysisandvalidation AT wingenderedgar integrationofgeneexpressiondatawithpriorknowledgefornetworkanalysisandvalidation AT fuchsmathias integrationofgeneexpressiondatawithpriorknowledgefornetworkanalysisandvalidation |