Cargando…

Modification of the Two-Point Scaling Theory for the Description of the Phase Transition in Solution. Analysis of Sodium Octanoate Aqueous Solutions

On the basis of conventional scaling theory, the two-point scaling theory was modified in order to describe the influence of composition on the partial molar heat capacity and volume during the micellization process. To verify the theory, isobaric heat capacities and densities of aqueous sodium octa...

Descripción completa

Detalles Bibliográficos
Autores principales: Piekarski, Henryk, Wasiak, Michał, Wojtczak, Leszek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298654/
https://www.ncbi.nlm.nih.gov/pubmed/22448076
http://dx.doi.org/10.1007/s10953-012-9795-6
Descripción
Sumario:On the basis of conventional scaling theory, the two-point scaling theory was modified in order to describe the influence of composition on the partial molar heat capacity and volume during the micellization process. To verify the theory, isobaric heat capacities and densities of aqueous sodium octanoate solutions were measured over wide composition and temperature ranges and the modified approach was used to analyze the calculated partial molar heat capacities and volumes of the surfactant in water. The results obtained indicate that the micellization process is subject to the scaling laws. The results were compared with those for other systems. Peculiar behavior of the critical indices was observed and correlated with the structure of the micelles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10953-012-9795-6) contains supplementary material, which is available to authorized users.