Cargando…
Carbon storage of headwater riparian zones in an agricultural landscape
BACKGROUND: In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would bot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298783/ https://www.ncbi.nlm.nih.gov/pubmed/22333213 http://dx.doi.org/10.1186/1750-0680-7-4 |
_version_ | 1782226037741977600 |
---|---|
author | Rheinhardt, Richard D Brinson, Mark M Meyer, Gregory F Miller, Kevin H |
author_facet | Rheinhardt, Richard D Brinson, Mark M Meyer, Gregory F Miller, Kevin H |
author_sort | Rheinhardt, Richard D |
collection | PubMed |
description | BACKGROUND: In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would both increase carbon storage and improve water quality. Age and management-related cover/condition classes of headwater stream networks can be used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions classes and their relative distribution on the landscape are known. RESULTS: Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242 MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide buffer zones. CONCLUSIONS: Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature forest along headwater reaches worldwide has the potential to not only improve water quality, but also simultaneously reduce atmospheric CO(2). |
format | Online Article Text |
id | pubmed-3298783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32987832012-03-12 Carbon storage of headwater riparian zones in an agricultural landscape Rheinhardt, Richard D Brinson, Mark M Meyer, Gregory F Miller, Kevin H Carbon Balance Manag Research BACKGROUND: In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would both increase carbon storage and improve water quality. Age and management-related cover/condition classes of headwater stream networks can be used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions classes and their relative distribution on the landscape are known. RESULTS: Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242 MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide buffer zones. CONCLUSIONS: Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature forest along headwater reaches worldwide has the potential to not only improve water quality, but also simultaneously reduce atmospheric CO(2). BioMed Central 2012-02-14 /pmc/articles/PMC3298783/ /pubmed/22333213 http://dx.doi.org/10.1186/1750-0680-7-4 Text en Copyright ©2012 Rheinhardt et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Rheinhardt, Richard D Brinson, Mark M Meyer, Gregory F Miller, Kevin H Carbon storage of headwater riparian zones in an agricultural landscape |
title | Carbon storage of headwater riparian zones in an agricultural landscape |
title_full | Carbon storage of headwater riparian zones in an agricultural landscape |
title_fullStr | Carbon storage of headwater riparian zones in an agricultural landscape |
title_full_unstemmed | Carbon storage of headwater riparian zones in an agricultural landscape |
title_short | Carbon storage of headwater riparian zones in an agricultural landscape |
title_sort | carbon storage of headwater riparian zones in an agricultural landscape |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298783/ https://www.ncbi.nlm.nih.gov/pubmed/22333213 http://dx.doi.org/10.1186/1750-0680-7-4 |
work_keys_str_mv | AT rheinhardtrichardd carbonstorageofheadwaterriparianzonesinanagriculturallandscape AT brinsonmarkm carbonstorageofheadwaterriparianzonesinanagriculturallandscape AT meyergregoryf carbonstorageofheadwaterriparianzonesinanagriculturallandscape AT millerkevinh carbonstorageofheadwaterriparianzonesinanagriculturallandscape |