Cargando…
Dual regulation of IRF4 function in T and B cells is required for the coordination of T–B cell interactions and the prevention of autoimmunity
Effective humoral responses to protein antigens require the precise execution of carefully timed differentiation programs in both T and B cell compartments. Disturbances in this process underlie the pathogenesis of many autoimmune disorders, including systemic lupus erythematosus (SLE). Interferon r...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302237/ https://www.ncbi.nlm.nih.gov/pubmed/22370718 http://dx.doi.org/10.1084/jem.20111195 |
Sumario: | Effective humoral responses to protein antigens require the precise execution of carefully timed differentiation programs in both T and B cell compartments. Disturbances in this process underlie the pathogenesis of many autoimmune disorders, including systemic lupus erythematosus (SLE). Interferon regulatory factor 4 (IRF4) is induced upon the activation of T and B cells and serves critical functions. In CD4(+) T helper cells, IRF4 plays an essential role in the regulation of IL-21 production, whereas in B cells it controls class switch recombination and plasma cell differentiation. IRF4 function in T helper cells can be modulated by its interaction with regulatory protein DEF6, a molecule that shares a high degree of homology with only one other protein, SWAP-70. Here, we demonstrate that on a C57BL/6 background the absence of both DEF6 and SWAP-70 leads to the development of a lupus-like disease in female mice, marked by simultaneous deregulation of CD4(+) T cell IL-21 production and increased IL-21 B cell responsiveness. We furthermore show that DEF6 and SWAP-70 are differentially used at distinct stages of B cell differentiation to selectively control the ability of IRF4 to regulate IL-21 responsiveness in a stage-specific manner. Collectively, these data provide novel insights into the mechanisms that normally couple and coordinately regulate T and B cell responses to ensure tight control of productive T–B cell interactions. |
---|