Cargando…
In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function
Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parki...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302787/ https://www.ncbi.nlm.nih.gov/pubmed/22427945 http://dx.doi.org/10.1371/journal.pone.0033057 |
_version_ | 1782226676935032832 |
---|---|
author | Cordova, Fabiano M. Aguiar, Aderbal S. Peres, Tanara V. Lopes, Mark W. Gonçalves, Filipe M. Remor, Aline P. Lopes, Samantha C. Pilati, Célso Latini, Alexandra S. Prediger, Rui D. S. Erikson, Keith M. Aschner, Michael Leal, Rodrigo B. |
author_facet | Cordova, Fabiano M. Aguiar, Aderbal S. Peres, Tanara V. Lopes, Mark W. Gonçalves, Filipe M. Remor, Aline P. Lopes, Samantha C. Pilati, Célso Latini, Alexandra S. Prediger, Rui D. S. Erikson, Keith M. Aschner, Michael Leal, Rodrigo B. |
author_sort | Cordova, Fabiano M. |
collection | PubMed |
description | Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress. |
format | Online Article Text |
id | pubmed-3302787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33027872012-03-16 In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function Cordova, Fabiano M. Aguiar, Aderbal S. Peres, Tanara V. Lopes, Mark W. Gonçalves, Filipe M. Remor, Aline P. Lopes, Samantha C. Pilati, Célso Latini, Alexandra S. Prediger, Rui D. S. Erikson, Keith M. Aschner, Michael Leal, Rodrigo B. PLoS One Research Article Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress. Public Library of Science 2012-03-13 /pmc/articles/PMC3302787/ /pubmed/22427945 http://dx.doi.org/10.1371/journal.pone.0033057 Text en Cordova et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cordova, Fabiano M. Aguiar, Aderbal S. Peres, Tanara V. Lopes, Mark W. Gonçalves, Filipe M. Remor, Aline P. Lopes, Samantha C. Pilati, Célso Latini, Alexandra S. Prediger, Rui D. S. Erikson, Keith M. Aschner, Michael Leal, Rodrigo B. In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function |
title |
In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function |
title_full |
In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function |
title_fullStr |
In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function |
title_full_unstemmed |
In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function |
title_short |
In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function |
title_sort | in vivo manganese exposure modulates erk, akt and darpp-32 in the striatum of developing rats, and impairs their motor function |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302787/ https://www.ncbi.nlm.nih.gov/pubmed/22427945 http://dx.doi.org/10.1371/journal.pone.0033057 |
work_keys_str_mv | AT cordovafabianom invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT aguiaraderbals invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT perestanarav invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT lopesmarkw invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT goncalvesfilipem invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT remoralinep invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT lopessamanthac invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT pilaticelso invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT latinialexandras invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT predigerruids invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT eriksonkeithm invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT aschnermichael invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction AT lealrodrigob invivomanganeseexposuremodulateserkaktanddarpp32inthestriatumofdevelopingratsandimpairstheirmotorfunction |