Cargando…

A Putative Cell Surface Receptor for White Spot Syndrome Virus Is a Member of a Transporter Superfamily

White spot syndrome virus (WSSV), a large enveloped DNA virus, can cause the most serious viral disease in shrimp and has a wide host range among crustaceans. In this study, we identified a surface protein, named glucose transporter 1 (Glut1), which could also interact with WSSV envelope protein, VP...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Huai-Ting, Leu, Jiann-Horng, Huang, Po-Yu, Chen, Li-Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302809/
https://www.ncbi.nlm.nih.gov/pubmed/22427993
http://dx.doi.org/10.1371/journal.pone.0033216
Descripción
Sumario:White spot syndrome virus (WSSV), a large enveloped DNA virus, can cause the most serious viral disease in shrimp and has a wide host range among crustaceans. In this study, we identified a surface protein, named glucose transporter 1 (Glut1), which could also interact with WSSV envelope protein, VP53A. Sequence analysis revealed that Glut1 is a member of a large superfamily of transporters and that it is most closely related to evolutionary branches of this superfamily, branches that function to transport this sugar. Tissue tropism analysis showed that Glut1 was constitutive and highly expressed in almost all organs. Glut1's localization in shrimp cells was further verified and so was its interaction with Penaeus monodon chitin-binding protein (PmCBP), which was itself identified to interact with an envelope protein complex formed by 11 WSSV envelope proteins. In vitro and in vivo neutralization experiments using synthetic peptide contained WSSV binding domain (WBD) showed that the WBD peptide could inhibit WSSV infection in primary cultured hemocytes and delay the mortality in shrimps challenged with WSSV. These findings have important implications for our understanding of WSSV entry.