Cargando…
Hierarchical Information Clustering by Means of Topologically Embedded Graphs
We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and ana...
Autores principales: | Song, Won-Min, Di Matteo, T., Aste, Tomaso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302882/ https://www.ncbi.nlm.nih.gov/pubmed/22427814 http://dx.doi.org/10.1371/journal.pone.0031929 |
Ejemplares similares
-
Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods
por: Musmeci, Nicoló, et al.
Publicado: (2015) -
Graph Theory Enables Drug Repurposing – How a Mathematical Model Can Drive the Discovery of Hidden Mechanisms of Action
por: Gramatica, Ruggero, et al.
Publicado: (2014) -
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
por: Yang, Luwei, et al.
Publicado: (2020) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021) -
Interplay between Topology and Dynamics in Excitation Patterns on Hierarchical Graphs
por: Hütt, Marc-Thorsten, et al.
Publicado: (2009)