Cargando…
Tools to Support Interpreting Multiple Regression in the Face of Multicollinearity
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should conside...
Autores principales: | Kraha, Amanda, Turner, Heather, Nimon, Kim, Zientek, Linda Reichwein, Henson, Robin K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303138/ https://www.ncbi.nlm.nih.gov/pubmed/22457655 http://dx.doi.org/10.3389/fpsyg.2012.00044 |
Ejemplares similares
-
The Assumption of a Reliable Instrument and Other Pitfalls to Avoid When Considering the Reliability of Data
por: Nimon, Kim, et al.
Publicado: (2012) -
Investigating bias in squared regression structure coefficients
por: Nimon, Kim F., et al.
Publicado: (2015) -
A new estimator for the multicollinear Poisson regression model: simulation and application
por: Lukman, Adewale F., et al.
Publicado: (2021) -
Multicollinearity and misleading statistical results
por: Kim, Jong Hae
Publicado: (2019) -
On a Mixed Poisson Liu Regression Estimator for Overdispersed and Multicollinear Count Data
por: Tharshan, Ramajeyam, et al.
Publicado: (2022)